COVID-19 Detection based on Lung CT Images using Convolutional Neural Network Architecture
نویسندگان
چکیده
Abstract: A CNN (Convolutional Neural Network) is a class of deep neural networks that are most used for analyzing visual imagery. This the widely learning algorithm image and video recognition, classification, segmentation, medical analysis natural language processing, many more. But, training Network from scratch requires more time lot data, performance model affected. ‘Transfer learning’ best approach where existing architectures have been trained on large datasets then fine-tuned our customized dataset. reduces to train often results in better performance. The main objective this paper detect COVID-19 lung CT images using VGG16 ImageNet. Index Terms: CNN, Transfer learning, VGG16, ImageNet.
منابع مشابه
Detection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملForecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CVR journal of science and technology
سال: 2021
ISSN: ['2581-7957', '2277-3916']
DOI: https://doi.org/10.32377/cvrjst2011